Skip to main content

Fink Group

Quantum Integrated Devices

The Fink group’s research is positioned between quantum optics and mesoscopic condensed matter physics. The team studies quantum physics in electrical, mechanical, and optical chip-based devices with the goal to advance and integrate quantum technology for simulation, communication, metrology, and sensing.

One of Fink’s goals is to develop a microchip-based router that will be able to convert a microwave signal to an optical signal with near unity efficiency. With such devices, the Fink group seeks to perform quantum communication with superconducting circuits and telecom wavelength photons. In one project, the group uses a qubit to create a single photon state. With the router, this microwave photon is converted into an optical photon, which can then be transmitted over long distances using low-loss optical fiber. The Fink group will also use this technique to entangle microwave and optical photons – an important step toward realizing worldwide quantum networks. Another direction is to develop higher quality qubits by using new electrical circuit elements called geometric superinductors which help suppress charge fluctuations that can wash out the quantum information stored on-chip.

View Fink group website

On this site:


Image of Georg Arnold

Georg Arnold

PhD Student

+43 2243 9000 2031

Image of Farid Hassani

Farid Hassani

PhD Student

+43 2243 9000 2125

Image of Lucky Kapoor

Lucky Kapoor

PhD Student

Image of Liu Qiu

Liu Qiu


Image of Rishabh Sahu

Rishabh Sahu


+43 2243 9000 2125

Image of Jennifer Sanchez Naranjo

Jennifer Sanchez Naranjo

PhD Student

Image of Riya Sett

Riya Sett

PhD Student

Image of Christian Siegele

Christian Siegele


Image of Alesya Sokolova

Alesya Sokolova

PhD Student

Image of Andrea Trioni

Andrea Trioni

PhD Student

Image of Thomas Werner

Thomas Werner

PhD Student

Current Projects

Quantum electro- and optomechanics | Quantum microwave photonics | Ultra-high impedance physics for hardware protected qubits | Multi-qubit quantum electrodynamics | Resonant nonlinear optics 


Fedotova E, Kuznetsov N, Tiunov E, Ulanov AE, Lvovsky AI. 2023. Continuous-variable quantum tomography of high-amplitude states. Physical Review A. 108(4), 042430. View

Fan ZY, Qiu L, Gröblacher S, Li J. 2023. Microwave-optics entanglement via cavity optomagnomechanics. Laser and Photonics Reviews., 2200866. View

Zemlicka M, Redchenko E, Peruzzo M, Hassani F, Trioni A, Barzanjeh S, Fink JM. 2023. Compact vacuum-gap transmon qubits: Selective and sensitive probes for superconductor surface losses. Physical Review Applied. 20(4), 044054. View

Mukhopadhyay S, Senior JL, Saez Mollejo J, Puglia D, Zemlicka M, Fink JM, Higginbotham AP. 2023. Superconductivity from a melted insulator in Josephson junction arrays. Nature Physics. View

Hassani F, Peruzzo M, Kapoor L, Trioni A, Zemlicka M, Fink JM. 2023. Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours. Nature Communications. 14, 3968. View

View All Publications

ReX-Link: Johannes Fink


since 2021 Professor, Institute of Science and Technology Austria (ISTA)
2016 – 2021 Assistant Professor, Institute of Science and Technology Austria (ISTA)
2015 – 2016 Senior Staff Scientist, California Institute of Technology, Pasadena, USA
2012 – 2015 IQIM Postdoctoral Research Scholar, California Institute of Technology, Pasadena, USA
2011 – 2012 Postdoctoral Research Fellow, ETH Zurich, Switzerland
2010 PhD, ETH Zurich, Switzerland

Selected Distinctions

2023 ERC Consolidator Grant
2018 Fritz Kohlrausch Award
2017 ERC Starting Grant
2012 IQIM Postdoctoral Prize Fellowship
2010 ETH Medal for Outstanding Dissertation
2009 CSF Award at the QSIT Conference on Quantum Engineering

Additional Information

Download CV

View group website

Physics & Beyond at ISTA

theme sidebar-arrow-up
Back to Top