Skip to main content

Fischer Group

Theory of Partial Differential Equations, Applied and Numerical Analysis

Diverse phenomena such as the motion of fluids or elastic objects, the evolution of interfaces, or the physics of quantum-mechanical particles are described accurately by partial differential equations. The Fischer group works on the mathematical analysis of partial differential equations that arise in the sciences, connecting also to areas like numerical analysis or probability.

Partial differential equations are a fundamental tool for the description of many phenomena in the sciences, ranging from the physics of continua like fluids or elastic solids over quantum mechanics to population biology. Julian Fischer and his group work on the mathematical aspects of partial differential equations. One of the group’s main themes is the mathematical justification of model simplifications: For example, an elastic material with a highly heterogeneous small-scale structure may in many cases be approximated as a homogeneous material. Likewise, a fluid with low compressibility may in many cases be approximated as ideally incompressible. To justify such approximations, the group derives rigorous estimates for the approximation error. The techniques they employ connect the analysis of PDEs with adjacent mathematical areas like numerical analysis and probability.

On this site:


Current Projects

Effective behavior of random materials | Evolution of interfaces in fluid mechanics and solids | Fluctuating hydrodynamics and SPDEs | Entropy-dissipative PDEs


Marveggio A. 2023. Weak-strong stability and phase-field approximation of interface evolution problems in fluid mechanics and in material sciences. Institute of Science and Technology Austria. View

Cornalba F, Disselkamp C, Scassola D, Helf C. 2023. Multi-objective reward generalization: improving performance of Deep Reinforcement Learning for applications in single-asset trading. Neural Computing and Applications. View

Clozeau N. 2023. Optimal decay of the parabolic semigroup in stochastic homogenization  for correlated coefficient fields. Stochastics and Partial Differential Equations: Analysis and Computations. 11, 1254–1378. View

Cornalba F, Shardlow T. 2023. The regularised inertial Dean’ Kawasaki equation: Discontinuous Galerkin approximation and modelling for low-density regime. ESAIM: Mathematical Modelling and Numerical Analysis. 57(5), 3061–3090. View

Cornalba F, Fischer JL. 2023. The Dean-Kawasaki equation and the structure of density fluctuations in systems of diffusing particles. Archive for Rational Mechanics and Analysis. 247(5), 76. View

View All Publications

ReX-Link: Julian Fischer


since 2022 Professor, Institute of Science and Technology Austria (ISTA)
2017 – 2022 Assistant Professor, Institute of Science and Technology Austria (ISTA)
2014 – 2016 Postdoc, Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
2013 – 2014 Postdoc, University of Zurich, Switzerland
2013 PhD, University of Erlangen-Nürnberg, Germany

Selected Distinctions

2020 ERC Starting Grant
2020 ÖMG-Förderungspreis, Early-/Mid-Career-Award of the Austrian Mathematical Society
2015 Dr. Körper Prize, PhD Award of the GAMM

Additional Information

Open Julian Fischer’s website
Go to Mathphys Analysis Seminar website
Mathematics at ISTA

theme sidebar-arrow-up
Back to Top