Jösch Group
Neuroethology
Maximilian Jösch and his team study the neuronal basis of innate behaviors, i.e. the processes implemented by neuronal circuits to transform sensory information into motor commands. Using a combination of molecular and physiological approaches, they monitor brain activity during animal behavior to reveal the principles and motifs of neuronal computation.
Two different model organisms, the mouse and the fruit fly (Drosophila melanogaster), are being used in parallel to take advantage of their unique strengths and gather a general, crossphyla understanding of computational principles. Experiments in the mouse will allow the group to study the mechanisms used by the nervous system to send behaviorally relevant information from the eye to the brain, e.g., to easily detect a red apple in the green foliage. By conducting experiments in the fly, the group intends to obtain comprehensive understanding of the molecular, anatomical, and physiological instructions conveyed by a highly defined circuit involved in course control. This is possible because neuronal circuits in the fly brain are highly stereotyped, allowing high throughput screenings of the behavioral role of identified cells.
On this site:
Team
Current Projects
Comprehensive mapping of the behavioral repertoire instructed by defined neuronal circuitries | Role of electrical synapses in sensory transformations | Mechanisms of visual saliency and attention | State dependent modulation of sensory information | Sensorimotor transformation in the superior colliculus
Publications
Reyes‐Pinto R, Ferrán JL, Vega Zuniga TA, González‐Cabrera C, Luksch H, Mpodozis J, Puelles L, Marín GJ. 2022. Change in the neurochemical signature and morphological development of the parvocellular isthmic projection to the avian tectum. Journal of Comparative Neurology. 530(2), 553–573. View
Fredes Tolorza FA, Silva Sifuentes MA, Koppensteiner P, Kobayashi K, Jösch MA, Shigemoto R. 2021. Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation. Current Biology. 31(1), P25–38.E5. View
Deichler A, Carrasco D, Lopez-Jury L, Vega Zuniga TA, Marquez N, Mpodozis J, Marin G. 2020. A specialized reciprocal connectivity suggests a link between the mechanisms by which the superior colliculus and parabigeminal nucleus produce defensive behaviors in rodents. Scientific Reports. 10, 16220. View
Salazar JE, Severin D, Vega Zuniga TA, Fernández-Aburto P, Deichler A, Sallaberry A. M, Mpodozis J. 2019. Anatomical specializations related to foraging in the visual system of a nocturnal insectivorous bird, the band-winged nightjar (Aves: Caprimulgiformes). Brain, Behavior and Evolution. 94(1–4), 27–36. View
Masís J, Mankus D, Wolff S, Guitchounts G, Jösch MA, Cox D. 2018. A micro-CT-based method for characterising lesions and locating electrodes in small animal brains. Journal of visualized experiments (JoVE). 141. View
ReX-Link: Maximilian Jösch
Career
since 2017 Assistant Professor, Institute of Science and Technology Austria (ISTA)
2010 – 2016 Postdoc and Research Associate, Harvard University, Cambridge, USA
2009 Postdoc, Max Planck Institute of Neurobiology, Martinsried, Germany
2009 PhD, Max Planck Institute of Neurobiology, Martinsried, Germany and Ludwig Maximilian University, Munich, Germany
Selected Distinctions
2017 ERC Starting Grant
2016 Article Recommendation by F1000
2014 Best Poster Award, Retina FASEB Meeting
2011 Otto Hahn Medal, Max Planck Society
2011 Best Neuroscience Article, Neuroforum
2010 HFSP Long-term Fellowship
2009 Summa Cum Laude, PhD thesis