Saric Group
Computational Soft and Living Matter
How do lifeless molecules create living organisms? How can such processes fail, resulting in diseases? At the intersection of soft matter physics, molecular cell biology, and physical chemistry, the Saric group studies physical mechanisms behind non-equilibrium self-organization of biomolecules in healthy and diseased states.
Currently, the group is focused on investigating the physical principles of cellular reshaping and cell division across evolution, and on the formation of pathological protein aggregates in the context of neurodegenerative diseases. Saric group develops computational models rooted in soft matter and statistical physics, which are powerful in traversing scales and investigating collective phenomena. The group closely collaborates with experimental colleagues on a range of systems, from synthetic set-ups to living cells.
On this site:
Team
Current Projects
Non-equilibrium protein assembly: from building blocks to biological machines | The evolution of trafficking: from archaea to eukaryotes | Rational design of cell-reshaping elements | Collagen assembly: from molecules to fibrils | Amyloid aggregation: Inhibition of self-replication and membrane-mediated control
Publications
Sorichetti V, Lenz M. 2023. Transverse fluctuations control the assembly of semiflexible filaments. Physical Review Letters. 131(22), 228401. View
Bussi C, Mangiarotti A, Vanhille-Campos CE, Aylan B, Pellegrino E, Athanasiadi N, Fearns A, Rodgers A, Franzmann TM, Šarić A, Dimova R, Gutierrez MG. 2023. Stress granules plug and stabilize damaged endolysosomal membranes. Nature. View
Rojas Vega MN, De Castro P, Soto R. 2023. Mixtures of self-propelled particles interacting with asymmetric obstacles. The European Physical Journal E. 46(10), 95. View
Grober D, Palaia I, Ucar MC, Hannezo EB, Šarić A, Palacci JA. 2023. Unconventional colloidal aggregation in chiral bacterial baths. Nature Physics. View
Michaels TCT, Qian D, Šarić A, Vendruscolo M, Linse S, Knowles TPJ. 2023. Amyloid formation as a protein phase transition. Nature Reviews Physics. 5, 379–397. View
ReX-Link: Anđela Šarić
Career
since 2022 Assistant Professor, Institute of Science and Technology Austria (ISTA)
2016 – Present Associate Professor of Physics, University College London, UK
2013 – 2016 HFSP Postdoctoral Fellow and Emmanuel College Junior Research Fellow, University of Cambridge, UK
2013 PhD, Columbia University in New York, USA
Selected Distinctions
2022 Biophysical Society Paper of the Year Award
2021 EMBO Young Investigator Award
2018 ERC Starting Grant
2017 Royal Society University Research Fellowship
2013 HFSP Postdoctoral Fellowship
2013 The Hammet outstanding PhD Thesis Award, Columbia University