Alistarh Group
Verteilte Algorithmen und Systeme
Verteilung war im letzten Jahrzehnt ein wesentlicher Trend der Informatik: Prozessorarchitekturen sind mehrkernig, während Großsysteme für maschinelles Lernen und Datenverarbeitung über mehrere Maschinen oder sogar Datenzentren verteilbar sind. Die Alistarh-Gruppe arbeitet an Algorithmen, die diese Entwicklung nutzen können, indem sie skalierbare Software entwickelt – diese verbessert die Performance, sobald mehr Rechenleistung verfügbar ist.
Diese fundamentale Veränderung zu verteiltem Rechnen bringt aufregende offene Fragen mit sich: Wie gestalten wir Algorithmen, die jedes letzte Stück Performance aus der derzeitigen Generation der Computer-Architektur nutzen können? Wie entwickeln wir zukünftige Architekturen, um skalierbarere Algorithmen zu unterstützen? Gibt es klare Abstraktionen, um Hochleistungs-Verteilung für Programmierer zugänglich zu machen? Die Forschung der Alistarh-Gruppe konzentriert sich auf die Beantwortung dieser Fragen. Insbesondere ist die Gruppe daran interessiert, effiziente und praktische Algorithmen für grundlegende Probleme der verteilten Datenverarbeitung zu entwickeln, die inhärenten Grenzen verteilter Systeme zu verstehen und neue Wege zur Überwindung dieser Grenzen zu entwickeln. Ein besonderer Fokus in den letzten Jahren war das verteilte maschinelle Lernen.
On this site:
Team
Laufende Projekte
Verteiltes Machine Learning | Gleichzeitige Datenstrukturen und Anwendungen | Molekulare Berechnung
Publikationen
Alistarh D-A, Rybicki J, Voitovych S. 2022. Near-optimal leader election in population protocols on graphs. Proceedings of the Annual ACM Symposium on Principles of Distributed Computing. PODC: Symposium on Principles of Distributed Computing, 246–256. View
Balliu A, Hirvonen J, Melnyk D, Olivetti D, Rybicki J, Suomela J. 2022. Local mending. International Colloquium on Structural Information and Communication Complexity. SIROCCO: Structural Information and Communication ComplexityLNCS vol. 13298, 1–20. View
Postnikova A, Koval N, Nadiradze G, Alistarh D-A. 2022. Multi-queues can be state-of-the-art priority schedulers. Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPoPP: Sympopsium on Principles and Practice of Parallel Programming, 353–367. View
Brown TA, Sigouin W, Alistarh D-A. 2022. PathCAS: An efficient middle ground for concurrent search data structures. Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. PPoPP: Sympopsium on Principles and Practice of Parallel Programming, 385–399. View
Shevchenko A, Kungurtsev V, Mondelli M. 2022. Mean-field analysis of piecewise linear solutions for wide ReLU networks. Journal of Machine Learning Research. 23(130), 1–55. View
ReX-Link: Dan Alistarh
Karriere
seit 2017 Assistant Professor, Institute of Science and Technology Austria (ISTA)
2016 – 2017 “Ambizione Fellow”, Computer Science Department, ETH Zurich
2014 – 2016 Researcher, Microsoft Research, Cambridge, UK
2014 – 2016 Morgan Fellow, Downing College, University of Cambridge, UK
2012 – 2013 Postdoc, Massachusetts Institute of Technology, Cambridge, USA
2012 PhD, EPFL, Lausanne, Switzerland
Ausgewählte Auszeichnungen
2018 ERC Starting Grant
2015 Awarded Swiss National Foundation “Ambizione” Fellowship
2014 Elected Morgan Fellow at Downing College, University of Cambridge
2012 Postdoctoral Fellowship of the Swiss National Foundation
2011 Best Paper Award at the International Conference on Distributed Computing and Networking